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ABSTRACT  

A common activity in experimental bluff body aerodynamics is the measurement of pressure fields 
acting on models by multi-channel scanners. These measurements are often analyzed by multi-variate 
statistical techniques such as Principal Component Analysis (PCA), more commonly referred as Proper 
Orthogonal Decomposition (POD), which represents the measurements as a linear combination of 
deterministic vectors, the PCA modes, modulated by uncorrelated amplitudes. The PCA modes have 
often been interpreted as elementary pressure patterns, whose characteristics reflect the aerodynamic 
behavior of the model, and used for interpretation purpose. However, a strong limitation involved in 
the use of PCA as a pattern identification tool is related to the orthogonality of its modes that, from a 
physical point of view, is not justifiable. With the purpose of obtaining a representation formula 
analogous to PCA, but based on a non-orthogonal set of modes, the concept of Independent 
Component Analysis (ICA) is briefly described and applied to the analysis of pressure measurements 
carried out of a high-rise building model. 

                                                 
 Contact person: L.Carassale, DICAT – University of Genova, Via Montallegro 1 – 16145 Genova, Italy, ph: +39 010 353 

2226, FAX: +39 010 353 2534, E-mail: luigi.carassale@unige.it 

Interpretation of aerodynamic pressure measurements by 
Independent Component Analysis 

L.Carassale, A.Vernazzani 
Dept. of Civil Environmental and Architectural Engineering, University of Genova 

 e-mail – luigi.carassale@unige.it  
Dept. of Civil Environmental and Architectural Engineering, University of Genova 

 e-mail – vernazzani@hotmail.it  

 



1. INTRODUCTION 

A common activity in experimental bluff body aerodynamics is the measurement of pressure fields 
acting on models by multi-channel scanners. These measurements are usually idealized as realizations 
of multi-variate random processes and analyzed by means of statistical approaches usually involving 
some a-priori assumptions such as stationarity and ergodicity. In this context, one of the most popular 
techniques is the Principal Component Analysis (PCA), more commonly referred, in bluff body 
aerodynamics, as Proper Orthogonal Decomposition (POD) (e.g. Solari et al. 2007). According to this 
technique, a zero-mean N-variate random process is represented by the linear combination of 
deterministic vectors, referred to as PCA modes, modulated by random processes called Principal 
Components (PC). PCA possesses three essential properties: 1 – the modes are the eigenvectors of the 
zero-time-lag covariance matrix of the process and are orthogonal with respect to the Euclidean inner 
product; 2 – the PC are uncorrelated with each other; 3 – a modal representation based on the PCA 
modes has the fastest possible convergence in the mean square sense among all the possible linear 
combinations and therefore can be used to identify reduced-order representations of multi-variate 
processes. 

In practical applications PCA is usually interpreted as a tool for the representation of some specific 
dataset obtained from an experiment. In this case, the modes are calculated from the sample 
covariance matrix of the measurements and the PCs are obtained projecting the data on the modes. 
The number of modes to be retained in the representation is variable from case to case and can be 
selected on the basis of some convergence criteria; however, the application of PCA to several 
case-studies demonstrated that the number of modes to be considered is usually very small and that 
the representation of the pressure field can be obtained by the superimposition of very few modes, 
which are interpreted as pressure patterns acting on the body with a complete lack of correlation. 

From a different point of view, the dominant (with higher variance) modes have often been 
conceived as convenient tools for the qualitative analysis of pressure fields. The modes are indeed 
interpreted as elementary pressure patterns, whose characteristics reflect the aerodynamic behavior of 
the model. Following this approach, it seems natural to ask whether or not the PCA modes have any 
physical meaning or can separate different physical mechanisms concurring in the generation of the 
pressure field. These conjectures are encouraged by some interpretations of PCA for which the first 
mode represents the most recurrent (or typical) deterministic shape hidden in a random phenomenon 
(Lumley 1970) and by its successful application in several contexts to identify deterministic 
structures such as dominant eddies (Holmes et al. 1996). In the wind engineering community, it is 
believed that, even if the PCA modes have some ability in separating some loading contributions (e.g. 
along-wind and cross-wind forces on symmetrical bodies (Carassale 2009)), their shape do not 
necessarily resemble any physically consistent pressure distribution (Baker 2000).  

A strong limitation involved in the use of PCA as a pattern identification tool is related to the 
orthogonality of its modes that, from a physical point of view, is not justifiable. The elimination of 
such a condition, however, is not trivial since it is implicitly embedded in PCA formulation (the 
modes are the eigenvectors of a symmetric matrix) and, even if it were conceptually possible, it would 
makes the estimation of the modes undetermined. 

With the purpose of obtaining a representation formula analogous to PCA, but based on a 
non-orthogonal set of modes, the concept of Independent Component Analysis (ICA) is briefly 
described. This technique has a relatively recent formulation and has been largely employed in 
several contexts for the solution of the so-called Blind Source Separation (BBS) problem (Hyvärinen 
et al. 2001). In the wind engineering field, a somehow similar technique called projection pursuit has 
been applied by Gilliam et al. (2004) for the study of the vortexes emitted by a corner on the roof of a 
low-rise building; at the authors’ knowledge, no other application has been presented. 

In bluff-body aerodynamics, ICA can be employed, exactly like PCA, to represent pressure fields 
acting on a body as a linear combination of deterministic pressure patterns. The application of this 
technique to the analysis and interpretation of pressure measurements carried out on a prismatic 
high-rise building model demonstrates its potentialities. 



2. MODAL REPRESENTATION OF PRESSURE FIELDS 

Let q(t) be an N-variate stationary random process, function of the time t, representing the pressure 
field acting on a body, discretised in space according to the experimental setup or the computational 
mesh. The analysis of the pressure field can be carried out by estimating from the measured data 
statistical quantities such as correlation functions and probability distribution functions. Besides, the 
interpretation process often involves the realization of reduced-order representations aimed at 
reducing the dimension of the data space, emphasizing some desiderated features of the phenomenon. 
This operation is typically performed by introducing modal representation formulae of the type: 

( ) ( )k k
k

t p t= +∑qq µ ψ  (1) 

where µq is the expected value of q, ψk (k=1,2,…) are deterministic vectors of order N referred to as 
modes and pk(t) are stationary random processes. Among the infinite possible modal representations 
in the form of Eq. (1), the Principal Component Analysis (PCA), often referred to as Proper 
Orthogonal Decomposition (POD, e.g. Holmes et al. 1996) is by far the most popular choice because 
of some properties that are briefly recalled in the section below. In the following, without loss of 
generality, q(t) will be considered as zero-mean since a possible mean value can be included in the 
modal representation as in Eq. (1). 

2.1 Principal Component Analysis (PCA) 
According to PCA, the pressure field q(t) acting on a body is represented by the modal expansion: 
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1

N
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t x t
=

= =∑q xφ Φ  (2) 

where the vectors φk (k = 1,…,N) are the eigenvectors of the zero-time-lag covariance matrix of q and 
are referred to as PCA modes, while xk are the Principal Components (PC); the matrix Φ having 
components Φj,k (j, k = 1,…,N) is obtained assembling columnwise the eigenvectors, x=[x1,…,xN]T and 
the eigenvectors are enumerated in such a way that their corresponding eigenvalues λk are sorted in 
decreasing order. PCA has the following properties (e.g. Carassale et al. 2007): 
1 PCA modes are orthonormal (i.e. φj

Tφk = δjk), thus Φ is an orthogonal matrix (i.e. Φ-1 = ΦT) and 
may be identified as a rotation in N; 

2 the PC are zero-mean and are uncorrelated with each other (i.e. E[xj(t) xk(t)] = 0 for j ≠ k); 
3 the variance of the PC is determined by the eigenvalues (i.e. E[xk(t)2] = λk); 
4 the first PCA mode φ1 represents the direction in N as parallel as possible (in the mean square 

sense) with the vector q, i.e. it maximizes the measure 

( )2T
1 1EJ  =   

qφ  (3) 

with the constrain ||φ1||=1; because of this property, φ1 is often interpreted as the typical or the most 
recurrent direction of q; 

5 the modal representation given by Eq. (2) has the maximum possible velocity of convergence in the 
mean square sense; letting 
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x
=
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then, q(j) represents the best (in the mean square sense) j-variate approximation of q, i.e. the error 
measure 
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is minimum among all the possible modal representations, while the energy measure 
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is maximum. 
Thanks to the above properties, the reduced-order models derived by PCA are optimal in the mean 

square sense and may be employed to synthesize the relevant content of experimental datasets fading 
the noise out.  

On the other hand, the perfect lack of correlation between the PCs may suggests that, is q is 
originated by a sum of independent physical causes, then these should remain associated to different 
modes. Unfortunately, this conjecture is not true since Eq. (2) is only one of the infinite possible 
linear transformations mapping the vector q into a vector with uncorrelated components. The 
problem of separating different physical causes is addressed in the Section below by means of the 
Independent Component Analysis (ICA). 

2.2 Independent component analysis (ICA) 
ICA can be formalized as follows. Let us assume that the random fluctuation of the pressure field q is 
provided by a generative model of the kind 

( ) ( )t t=q As  (7) 

where s is a vector of n statistically independent sources sk (k = 1,…,n) said independent components 
(IC) and A is an N×n full-rank matrix referred to as mixing matrix. The objective of ICA is the 
estimation of the sources s and of the mixing matrix A, given the experimental measurements q. It is 
clear that the ICA model (Eq. (7)) is analogous to the representation formula offered by PCA (Eq. (2)
), with the difference that the columns ak of the matrix A are, in general, non-orthogonal and that the 
ICs sk are now statistically independent instead of simply uncorrelated like the PCs xk. 

The problem of estimating s and A form q is undetermined since, as it is clear from the structure of 
Eq. (7), any permutation and scaling of the ICs can be compensated by a suitable permutation and 
scaling of the columns of A. In order to remove such an indetermination, it is assumed that the ICs 
have unit variance and that are enumerated by sorting the norms of the corresponding columns of A in 
decreasing order. 

The estimation of s and A can be carried out according to different principles including maximum 
likelihood, mutual information minimization and non-Gaussianity maximization (Hyvärinen et al. 
2001). In the following, the latter principle will be applied and justified on a heuristic basis. 

According to Eq. (7), the vector q is provided by a linear combination of the statistically 
independent sources sk; on the other hand, since q is in the range of A, then an estimator s  for the ICs 
s should be provided by a linear combination of the measurements in the form 

( ) ( )t t=s Bq  (8) 

Obviously, B cannot be directly computed since A is unknown; however, relying on Eq. (8) an 
estimator of an IC sk can be written in the form 

T T T
ks = = =b q b As y s  (9) 

where bT is a row of B and the estimator of the IC is expressed as a linear combination of the ICs 
themselves. Obviously, ks  correctly estimates sk when y is a vector containing all zeros, but a one in 
the position k.  

Eq. (9) cannot be directly used to define the estimator ks  since both B and s are unknown; 



however, it may be argued that, if the ICs have non-Gaussian distribution, due to the central limit 
theorem, their linear combinations tend to be more Gaussian than the ICs themselves. According to 
this principle the estimator ks  may be obtained by maximizing the non-Gaussianity of the linear 
combination yTs with respect the vector y in n. This operation is not possible since s is unknown, 
however the same result can be obtained by maximizing the non-Gaussianity of the linear 
combination bTq with respect to b in N. 

The implementation of this principle as an optimization problem requires the definition of a 
measure for non-Gaussianity; a suitable measure for this purpose is constituted by the neg-entropy 
(Hyvärinen et al. 2001). The neg-entropy of a scalar-valued random variable y is defined as 

[ ] ( ) ( ) ( )( )1 log 2 log d
2 y y yJ y p p= + πσ + η η η∫  (10) 

where py and σy are, respectively, the probability density function (pdf) and the standard deviation 
(SD) of y. The integral in Eq. (10), which is extended to the whole definition domain of py, represents, 
if changed of sign, the entropy of the random variable y, while the first two terms provide the entropy 
of a Gaussian random variable having SD σy. Due to the maximum entropy principle (a Gaussian 
random variable have maximum entropy among all the random variables with the same SD), the 
neg-entropy is always non-negative and is zero only when y is a Gaussian random variable. Besides, 
the neg-entropy is invariant with respect the mean and the SD of y. 

According to the principle described above, the ICs can be estimated by maximizing the 
neg-entropy of linear combinations of the type bTq, with respect to the vector b in N. From the 
vectors bj corresponding with the relative maxima of the neg-entropy, the matrices B and A, as well 
as the ICs s can be estimated. 

In many practical applications, the experimental data do not have any specific physical reason to 
follow the ICA model given by Eq. (7) (e.g. the pressure field on a body is not necessarily the linear 
combination of statistically independent sources). However, the application of the estimation 
procedure described above is still significant since provides a mixing matrix that makes the 
components of the vector s as much statistically independent as possible. In this sense, ICA may be 
interpreted as a modification of PCA in which the orthogonality condition on the modes is substituted 
by the maximum-independence condition on the coefficients of the linear combination. 

A further issue in applying ICA in a practical context is related to the fact that the ICs are equalized 
(unit variance). As a consequence, all the ICs tend to have similar importance in the description of the 
pressure field, in contrast with the PCA, which provides the maximum possible velocity of 
convergence of the modal representation. This implies that ICA is, in general, less efficient than PCA 
in identifying reduced-order models. In order to circumvent this problem, PCA and ICA is jointly 
applied: PCA is applied first to reduce the dimension of the data space, projecting the data q into the 
space spanned by the first n PCA modes. Then, ICA is applied to the reduced-order version of the data 
q(n) (Eq. (4)) or, equivalently, on the vector containing the first n PCs. 

Once the ICs and the mixing matrix A have been estimated, the modal representation provided by 
ICA can be employed to represent pressure fields acting on a body as a linear combination of 
deterministic pressure patterns determined by the columns of the mixing matrix ak, modulated by 
statistically independent (as much as possible) amplitudes corresponding to the ICs.  

3. EXPERIMENTAL APPLICATION 

This paragraph compares the results provided by PCA and ICA applied to the pressure field 
measured on a high-rise building model. The model is prismatic, has square base and aspect ration 1 
to 5 (Fig. 1a); the wind flow is characteristic of urban terrain and the Reynolds number is 1.4×105 (full 
details on the experimentation and on the PCA analysis of the whole pressure field acting on the 
model can be found in Kikuchi et al. (1997)). In the present analysis, only the data measured by the 20 
pressure taps at the level of the stagnation point (Fig. 1b) are considered. 
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Figure 1: experimental model (a), layout of the pressure taps employed in the 
analysis (b). 

Figure 2 shows the PCA modes estimated from the data. Modes 1 and 3 (Fig. 2a and 2c) are 
antisymmetric and represent cross-wind and torsional actions, while modes 2, 4, 5 and 6 (Fig. 2b, 2d, 
2e and 2d) are symmetric and, as such, produce purely along-wind net forces. 
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Figure 2: first six PCA modes of pressure field. 

Figure 3 shows the convergence, in terms of SD, of the modal representation of the pressure field 
offered by PCA. Figures 3a to 3c show, respectively, the convergence of the norm of the pressure 
field (||q||, Fig. 3a) and of the local pressure field in two positions on a lateral face of the model, 
immediately after the windward corner (q14, Fig. 3b) and immediately before the leeward corner (q18, 
Fig. 3c). Figures 3d to 3f show, respectively, the convergence of the generalized forces fx

(j), fy
(j) and 

mz
(j) produced by the pressure field q(j). The pressure field q(6) represented through the six modes 

reported in Figure 2 approximates the actual pressure field representing 93% of the SD of its norm, 
95% and 96% of the SD of the pressure measured by pressure taps 14 and 18, respectively, 99% of the 
along-wind force SD, 100% of the cross-wind force SD and 87% of the torsional moment SD. As it 
was already noted by Kikuchi et al. (1997), the torsional moment has slower convergence with 
respect to the other generalized forces; besides, it is worth noting that 99% of the cross-wind force SD 
is provided by the first mode (Fig. 2a). 

In spite of the excellent convergence observed in Figure 3 and of the successful separation of 



along-wind and cross-wind/torsional contributions, which is due to the symmetry of the test condition 
(Carassale 2009), the use of these modes as interpretative tools for describing the pressure field is 
troublesome. Indeed, some features of the modes seem not to be consistent with the known physical 
phenomenon. In particular, mode 1 (Fig. 2a) presents pressure distributions deterministically equal 
(with opposite sign) on the two lateral faces of the model, while, it is well known that the suction 
generated by vortex shedding tends to be quite more intense than the compression appearing on the 
opposite face. Besides, mode 4 (Fig. 2d) represents a pressure distribution acting on the lateral faces 
that is somehow compatible with the formation of recirculation bubbles after the windward corners 
and the re-attachment of the boundary layer on the lateral faces just before the leeward corners; 
unfortunately, mode 4 represents the synchronous realization of this mechanism on both the lateral 
faces of the model, while, at the Reynolds number reproduced in the experimentation, the vortex 
shedding is expected to be alternate. An effort to identify a physical interpretation of modes 3, 5 and 6 
does not seem reasonable. 
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Figure 3: convergence of the representation of the pressure field in terms of norm (a), 
SD of the local values at location 14 (b) and 18 (c), along-wind force (d), cross-wind 
force (e), torsional moment (f). 

 
Figure 4 shows the ICA modes obtained by the reduced-order pressure field q(6) defined by the 

first six PCA modes. In this representation, the cross-wind action is determined by four modes, two 
for a lateral face and two for the other one. Mode 1 (Fig. 4a) represents an intense suction after the 
windward corner on the left lateral face and a weak compression on the opposite face; mode 2 (Fig. 
4d) represents the pressure field symmetrical to mode 1. Modes 3 and 4 represents pressure 
distribution acting on the lateral faces (left and right, respectively) having their maximum value near 
the leeward corner. ICA modes 5 and 6 practically coincide with PCA modes 2 and 6 and mainly 
represent pressure distributions on the windward and leeward face, respectively. While in PCA 
representation the cross-wind action is completely contained in the first mode, in ICA representation 
the modes 1 to 4 contribute to the cross-wind force roughly with the same importance (the IC are unit 



variance, hence the importance of the modes is entirely due to their modal amplitude). This higher 
dimension of the space employed to represent the cross-wind action reflects in a better ability of ICA 
in identifying relevant physical mechanisms. In particular, unlike in the case of PCA, ICA modes do 
not imply a deterministic relationship between the pressure acting on the two lateral faces, enabling a 
more correct mono-variate representation of the pressure field on the lateral faces due to vortex 
shedding. 
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Figure 4: ICA modes spanning the space defined by the first six PCA modes (Fig. 2). 

Figure 5 shows the SD of the measured pressure field (solid line) and its representation by the first 
PCA mode φ1 (Fig. 5a, dashed line) and through the ICA mode a2 (Fig. 5b, dashed line); in the 
location of the pressure tap 14, they provide, respectively, 80% and 88% of the actual SD. 
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(a)    
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(b) 
Figure 5: Standard deviation of the mono-variate representation of the pressure field 
obtained by PCA mode 1 (a) and ICA mode 2 (b). 

Figure 6 shows the PSD (a) and the pdf (b) of the pressure coefficient q14, measured by a pressure 
tap located just after a leeward corner (Fig. 1b) (solid lines), of the PC x1 (dashed line) and of the IC s2 
(dash-dot line) whose respective modes provide most of the contribution to the representation of the 
pressure field in the neighborhood of tap 14 (Figs. 2 and 4). For the comparison, the pressure 
coefficient and the PC are standardized, i.e., 

14

0.5
14 14 1 1 1ˆ ˆ/ , /qq q x x= σ = λ . Both the considered PC and 

the IC have a spectral peak about the reduced frequency 8⋅10-2, consistently with the pressure 
coefficient measured just after the leeward corners (the frequency is non-dimensionalized by the size 
of the model cross section b and the undisturbed wind velocity U). From the comparison it appears 



that the PSD of the PC is more focalized at the peak frequency while the IC has higher power in the 
low frequency range. Form the observation of the pdf (Fig. 6b) it emerges that the probability 
distribution of the IC s2 is very similar to the probability distribution of the pressure coefficient q14, 
but is quite different from the probability distribution of x1, which, due to symmetry reasons, 
necessarily has a symmetric pdf (Carassale 2009).  
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Figure 6: PSD (a) and pdf (b) of the standardized pressure coefficient q14 (solid line), 
standardized PC x1 (dashed line) and IC s2 (dash-dot line).  

The difference between the probability distribution of x1 and s2 emerged in Figure 6b reflects in a 
different ability of PCA and ICA in realizing a mono-variate approximation of determined regions of 
the pressure field. To point out this difference, Figure 7 shows a portion of a time history of the 
pressure coefficient q14, compared to the mono-variate approximation obtained by PCA (Fig. 7a) and 
ICA (Fig. 7b). As it can be observed, a single ICA mode (mode 2, in this case) approximates 
accurately the measured time history, while PCA regularly underestimate the positive peaks (suction) 
and overestimate the negative peaks (compression) due to the symmetry of its probability 
distribution. 

Figure 8 shows the PSD (a), the coherence function (b) and the phase delay (c) of the ICs s1 and s2 
(Figs. a.1, b.1, c.1) and of the ICs s1 and s3 (Figs. a.2, b.2, c.2). The ICs s1 and s2 correspond to modes 
mainly contributing to the representation of the pressure filed on the lateral faces of the model just 
after the leeward corners (Fig. 4) and have similar PSD with a spectral peak at a reduced frequency 
about 8 – 9⋅10-2. Their coherence at the peak frequency is about 0.5 with a phase delay about π. These 
results indicate that the pressure fields represented by the ICA modes 1 and 2 fluctuate, at the vortex 
shedding frequency, with negatively-correlated amplitudes. In other words, when a suction (positive 
IC) appears at a side of the model, at the opposite side a compression is likely to appear. The ICA 
mode 3 represents a pressure distribution having its higher amplitude on the same lateral face than 
mode 1 (Fig. 4), but near the leeward corner. Its PSD has a peak at a reduced frequency about 0.1 (i.e. 
slightly higher than mode 1); in this frequency range the coherence is very high (about 0.8) and the 
phase delay is about 0.2π. This phase angle roughly coincides with the time necessary to cover a 
distance about 1.4 times the size of the model at the velocity of the undisturbed flow. This time seems 
to be compatible with the velocity of a vortex generated at the windward corner and advected along 
the lateral face of the model. 



0 100 200 300 400
tU/b

-1

0

1

2

q 14
(t)

,  
 A

14
,1

 s 1(t
)

q14

ICA - mode 2

-1

0

1

2

q 14
(t)

,  
 Φ

14
,1

 x 1(t
)

q14

PCA - mode 1

 
Figure 7: time histories of the pressure coefficient q14 (solid line) and its 
approximation by PCA mode 1 (a) and ICA mode 2 (b). 

Figure 9 shows the joint probability density function (jpdf) of the ICs s1 and s2 (Fig. 9a) and of the 
ICs s1 and s3 (Fig. 9b). The jpdf of s1 and s2 is structured in such a way that large positive values of s1 
tend to appear jointly with small values for s2 and vice versa. This statistical property, together with 
the phase delay observed in Figure 8c.1 suggests that the ICs s1 and s2 represent intense suctions and 
weak compressions appearing alternately on the two sides of the model. Figure 9b shows the jpdf of 
s1(t) and s3(t+τ), with τ being the time lag corresponding to the phase delay observed in Figure 8c.2 at 
the peak frequency. It can be noted that the s1 and s3 are well correlated at the time lag τ, indicating 
that the pressure field represented by mode 3 may be considered as the evolution of the pressure field 
represented by mode 1. From a physical point of view, it may be argued that mode 1 represents the 
generation of the recirculation bubble and the re-attachment of the boundary layer, while mode 3 may 
be consistent with the pressure field generated by vortex advected towards the leeward corner. Modes 
2 and 4 have the same role on the opposite face of the model. 
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Figure 8: PSD (a), coherence function (b), and phase delay (c) of the ICs s1 and s2 
(a.1, b.1 c.1) and of the ICs s1 and s3 (a.2, b.2, c.2). 
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Figure 9: joint probability density function of the ICs s1 and s2 at zero time lag and of 
the ICs s1 and s3 at the time lag corresponding to phase delay observed in Fig. 8b.3 at 
the peak frequency (b). 



4. CONCLUSIONS 

ICA can be employed to realize modal representations of pressure fields in alternative to the 
traditional PCA. From the analysis of a practical application it emerges that ICA modes result more 
consistent with the physical phenomenon under investigation and are more efficient in realizing 
low-dimensional models of local pressure fields in the regions characterized by the separation of the 
boundary layer. 

Referring to the particular case examined herein, the qualitative differences between ICA and PCA 
representations can be summarized as follows: 
1 ICA modes are consistent with an alternate vortex shedding having the suction phase more intense 

than the compression phase (modes 1 and 2); PCA representation suggests the realization of an 
alternate vortex shedding mechanism in which suction and compression have the same intensity 
(mode 1); 

2 the pdf of the ICs s1 and s2 corresponding to the pressure fields on the lateral faces near the 
windward corners are consistent with the pdf of the local pressure fields; on the contrary the pdf of 
the PC x1 responsible of most of the pressure fluctuation on the lateral faces is very far from the 
local pressure pdf; 

3 the time series of the local pressure on the lateral faces is better represented by a single ICA mode 
that by a single PCA mode; 

4 the two ICA modes representing the pressure field on each lateral face of the model are related in 
such a way to represent the advection of vortexes towards the leeward corners; this mechanism is 
not identifiable from the observation of the PCA modes. 
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